T1230-07-055

Surface Dissolution Imaging: Quantification of the Drug **Release and Swelling of Carbamazepine-Polymer Tablets** Breeze Outhwaite¹, Konstantin Tsinman¹, Rebeca Ruiz¹, Hayley Watson¹, Edmont Stoyanov², Wade Tanev²

¹Pion Inc., Forest Row, East Sussex, UK ²Nisso Chemical Europe GmbH, Düsseldorf, Germany

PURPOSE

The Pion SDi2 (Surface Dissolution imaging) instrument combines high resolution UV/vis imaging with a USP IV type flow through cell to study drug product performance. The scope of the project was to characterise and compare the extent of swelling of four polymer tablets containing no active pharmaceutical ingredient (API) and eight corresponding polymer tablets containing carbamazepine (CBZ), and obtain and compare the drug release profiles of the eight CBZ-polymer tablets, under gastric and intestinal conditions.

METHOD

Four polymer tablets (HPC-HFP, HPC-MFP, methocel K4M and methocel K100M) and eight corresponding carbamazepine (CBZ) containing tablets (tablets containing high quantities of CBZ (64%); high HFP, high MFP, high K4M, high K100M, as well as tablets containing low quantities of CBZ (10%); low HFP, low MFP, low K4M and low K100M), (Nisso Chemical Europe GmbH, Düsseldorf, Germany) were studied using the Pion SDi2. The USP IV type flowthrough dissolution cell was used in an open loop configuration to accommodate the tablets during dissolution. The dissolution media was introduced to the flow cell at a rate of 5 mL min⁻¹ for a total of six hours; the system maintained gastric conditions (0.1 M HCl, pH 1.2) for the initial two hours followed by intestinal pH conditions (0.05 M monobasic potassium phosphate, pH 6.5) for the remaining four hours.

Absorbance of UV light by dissolved drug was measured by illuminating the flow cell with a 300 nm LED, while swelling phenomena were monitored using a 520 nm LED (Fig. 1). The 4.2 Mpixel detector chip recorded absorbance per pixel per frame, at a rate of 1 frame per second per wavelength, to build up a two dimensional video at each wavelength.

Figure 1. Pion SDi2 schematic.

RESULTS

Drug Release

All eight CBZ containing tablets showed a transient burst of drug release upon transition from gastric conditions to intestinal conditions (Fig. 3-4). Total API release from the polymer was incomplete for all tablets at the end of the six hour experimental duration.

All of the "high" CBZ polymer tablets exhibited a higher drug release profile, when compared to their "low" CBZ polymer counterparts. The highest drug release profile was produced by the high MFP tablet, followed by high K4M, high K100M, and then high HFP. Low MFP, HFP, K4M and K100M all displayed relatively similar average concentrations over the duration of the experiments.

High MFP exhibited the highest C_{max} of all of the tablets, reaching a peak concentration of 0.0156 mg/mL at 108 minutes, whereas low K100M exhibited the lowest average concentrations, with a C_{max} of 0.0035 mg/mL at 120 minutes.

Sample	Δ Height (mm)	Δ Width (mm)				
High HFP	1.67	1.39				
High MFP	0.45	0.25				
High K4M	2.96	3.08				
High K100M	2.50	2.82				
Low HFP	1.68	1.28				
Low MFP	1.76	0.73				
Low K4M	2.37	3.03				
Low K100M	2.90	2.90				
HFP	2.78	3.13				
MFP	2.14	2.17				
K4M	2.85	2.45				
K100M	3.42	4.05				
Table 1. Change in dimensions of all 12						

CONCLUSION

extent of drug release.

Images were converted from greyscale to false colour and videos were extracted (Fig. 2). In each experiment involving CBZ-polymer tablets, a measurement zone was placed in a region above the tablet and the concentration of dissolved drug passing through this zone was measured in real-time in order to calculate the drug release with the use of a previously determined extinction coefficient, 7213 M⁻¹ cm⁻¹.

In addition, a cross measurement zone was placed across the center of the tablet to measure tablet swelling over time; the tablet edge threshold was considered to be absorbance greater than 1000 mAU. The tablet width and height were monitored in real time at 520 nm, for all twelve sample tablets.

Figure 5. Comparative swelling profiles of HFP- based tablets.

The drug release and swelling profiles of four API-free polymer tablets and eight corresponding CBZ containing tablets were analysed using the Pion SDi2.The highest drug release was exhibited by the high CBZ (64%) polymer tablets, and conversely the low CBZ (10%) polymers tablets showed the lowest

Analysis of the tablets at a visible wavelength visually illustrated that methocel polymer based tablets (K4M and K100M) swelled more significantly than HPC polymer based tablets (MFP and HFP). The CZB containing tablets exhibited different swelling behaviour compared to the CBZ-free tablets. Therefore the presence of API and the API drug load influences the behaviour of the polymer and should be considered in addition to polymer behaviour alone.

Figure 3. (left) Average concentration comparative drug releases profiles of carbamazepine-containing HFP-, MFP-, K4M- and K100M-based tablets.

Figure 4. (below) Video of high K4M tablet drug release and swelling, at 300nm.

Figure 2. (Right)Images taken at 300 nm, at 0, 1, 2 and 3 hours, to obtain the drug release profiles of eight CBZpolymer tablets exposed to gastric conditions for 1 hour and intestinal conditions for the subsequent 5 hours.

Swelling

The K4M- and K100M-based tablets showed the largest increase in size due to swelling, in comparison to the MFP- and HFP-based tablets (Table 1).

HFP, K4M and K100M samples all exhibited the same trend with regards to swelling; the API free polymer swelled the most significantly, followed by the high CBZ polymer, and the low CBZ polymer tablet swelled the least (Fig. 5). MFP showed a slightly different trend; the API free tablet had the most significant swelling, followed by the low API containing tablet, and the high API containing tablet showed the least swelling.

ACKNOWLEDGEMENTS

We would like to thank Nisso Chemical Europe GmbH for their kind donation of tablets and their scientific contribution to this poster.

	T _{0 hours}	T _{1 hours}	T _{2 hours}	T _{3 hours}
High HFP	300 nm 26 24 24 27 19 10 10 10 10 10 10 10 10 10 10	300 nm 28 T 24 T 10 T	300 nm 28 26 24 24 24 14 12 10 14 12 10 14 12 10 14 12 10 14 12 10 14 12 10 14 12 10 10 14 10 10 10 10 10 10 10 10 10 10	300 nm 28 26 47 24 47 10 10 10 10 10 10 10 10 10 10
High MFP	300 nm 28 7 24 7 24 7 18 7 16 7 10 7	300 nm 26 10 24 10 20 10 16 10 10 10 1	300 nm 26 27 24 47 10 10 10 10 10 10 10 10 10 10	300 nm 26 27 27 27 27 27 27 27 17 17 17 17 17 17 17 17 17 1
High K4M	300 nm 26 24 24 24 19 10 10 10 10 10 10 10 10 10 10	300 nm 28 26 41 20 10 10 10 10 10 10 10 10 10 1	300 nm 28 24 24 27 20 10 10 10 10 10 10 10 10 10 1	300 nm 28 7 24 7 20 7 18 7 10 7
High K100M	300 nm 26 24 24 20 18 16 14 11 12 10 10 10 10 10 10 10 10 10 10	300 nm 28 24 24 20 18 16 14 12 10 18 16 17 14 17 10 10 10 10 10 10 10 10 10 10	300 nm 28 26 24 24 19 10 18 19 19 19 19 19 10 19 10 10 10 10 10 10 10 10 10 10	300 nm 26 24 24 24 20 10 10 10 10 10 10 10 10 10 1
Low HFP	300 nm 26 24 24 29 20 18 10 10 10 10 10 10 10 10 10 10	300 nm 26 24 24 24 10 10 10 10 10 10 10 10 10 10	300 nm 28 26 24 24 20 18 16 16 14 10 10 10 10 10 10 10 10 10 10	300 nm 28 26 24 20 18 16 14 12 19 19 19 19 19 19 19 19 19 19
Low MFP	300 nm 26 24 24 20 18 16 14 12 10 10 10 10 10 10 10 10 10 10	300 nm	300 nm	300 nm
Low K4M	300 nm 28 26 41 22 20 10 10 10 10 10 10 10 10 10 1	300 nm 28 19 24 10 10 10 10 10 10 10 10 10 10	300 nm 28 26 19 24 10 18 19 10 10 10 10 10 10 10 10 10 10	300 nm 28 26 14 24 10 10 10 10 10 10 10 10 10 10
Low K100M	300 nm 26 HTT 24 HTT 10 HTT 14 HTT 10 HTT 14 HTT 10	300 nm 26 10 24 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 1	300 nm 26 24 24 27 18 19 19 10 10 10 10 10 10 10 10 10 10	300 nm 28 26 44 20 18 16 10 10 10 10 10 10 10 10 10 10

REFERENCES

1. J. Østergaard, F. Ye, J. Rantanen, A. Yaghmur, S. W. Larsen, C. Larsen and H. Jensen, J. Pharm. *Sci.*, 2011, **100**, 3405-3410

