

VCMを用いた非晶質固体分散体の調製とμFLUXによる薬物膜透過性評価

大阪医科薬科大学 薬学部 製剤設計学研究室 講師 博士(薬学)内山 博雅先生

目的

非晶質固体分散体は、薬物を非晶質状態へ と変換することで薬物の溶解性改善が可能に なる。MeltPrep社(オーストリア)のvacuum compression molding (VCM)は粉体のロスが少 なく、少量の粉体により非晶質固体分散体が 調製できる装置である。そこで本研究では、 種々の水溶性ポリマーを用いてVCMにより非 晶質固体分散体の調製を試みた。更には調製 した粉末からのモデル薬物の膜透過性をPion 社(米国)のµFlux (Rainbow R6, AuPRO 7.0)により 評価した。μFluxは溶解と膜透過性を同時に測 定できる装置であり、これまでに固体分散体 やナノ粒子において検討が行われている。薬 物の溶解性や膜透過性に対して、調製に用い たポリマーの影響を検討するとともに、界面 活性剤の添加やドナー側への薬物添加量が、 薬物の溶解性および膜透過性に及ぼす影響を 検討した。

実験

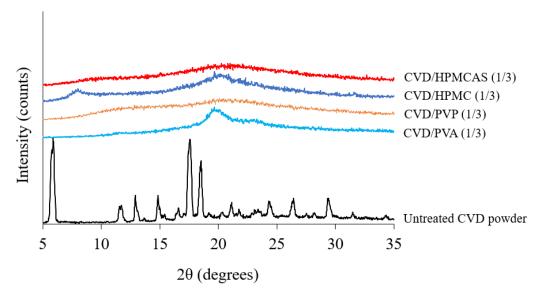
モデル薬物にはカルベジロール (CVD)を、水溶性ポリマーには、ポリビニルアルコール (PVA, ポバールJP-05)、ポリビニルピロリドン K-30 (PVP), ヒドロキシプロピルメチルセルロース E (HPMC)およびヒドロキシプロピルメチルセルロース酢酸エステルコハク酸エステ

ル (HPMCAS)を、界面活性剤にはショ糖脂肪酸エステル L-1695 (SE)を用いた。VCMによる固体分散体の調製は、薬物とポリマーを重量比として1対3で混合した粉末を約500 mg充填し、加熱温度180°C、加熱時間10分で溶融し、その後室温で20分間冷却した。得られた粉末はその後、振動ボールミルにより粉砕した。 μ Fluxの実験条件は、ドナー側に μ H6.5のリン酸緩衝液に分散したサンプルを薬物量として100あるいは300 μ g/mLとなるように添加し、200 rpmでの撹拌条件下、ドナー側の薬物濃度および μ H7.4のアクセプター溶液 (Acceptor sink buffer)中に透過した薬物量を測定間隔10秒で測定した。

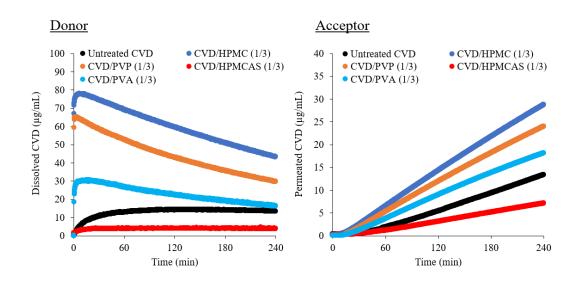
結果

図1にはVCMで調製した粉末の、粉末X線回 折測定の結果を示す。調製した粉末はいずれ もハローパターンを示し、非晶質状態であっ た。また示差走査熱量測定によるガラス転移 点の評価では、調製した粉末はいずれも単一 のガラス転移点を示した。

図2には、CVDの添加量を100 μ g/mLとし、調製した粉末からのCVDの溶解性および膜透過性を μ Fluxにより評価した結果を示す。また表1には、図2の結果から算出される膜透過速度(Flux (μ g/min/cm²))を示す。



日本バリデーション・テクノロジーズ株式会社


■ お問い合せ 共通TEL: 050-3536-1817(IP) MAIL: contact@validation.co.jp

VCMにより調製した粉末の粉末X線回折測定 図1

非晶質固体分散体からのCVDの溶解性および膜透過性の評価 図2 (CVD添加量: 100 μg/mL, 温度: 37℃, 撹拌速度: 200 rpm, 測定間隔: 10秒)

日本バリデーション・テクノロジーズ株式会社

■ お問い合せ 共通TEL: 050-3536-1817 (IP) MAIL: contact@validation.co.jp

表1 非晶質固体分散体からのCVDの膜透過速度 (FLUX)

	Untreated CVD	CVD/HPMC (1/3)	CVD/PVP (1/3)	CVD/HPMCAS (1/3)	CVD/PVA (1/3)
Flux (µg/min/cm ²)	0.567	1.263	1.077	0.322	0.850

使用した水溶性ポリマーでは、HPMCを用いた際にCVDの最も高い溶解性および膜透過性が得られた。

一方で、HPMCASでは、CVD原末より低い溶解性および膜透過性を示した。これは、塩基性薬物であるCVDとHPMCASの間でイオン間相互作用が形成され、調製した粒子からのCVDの放出性が低下したためと考えられた。

図3には、VCMにより調製した粉末に、界

面活性剤であるSEをCVDに対して半量物理混合した粉末を用いて μ Fluxにより評価した結果を示す。CVDの添加量は100 μ g/mLとした。表2には図3の結果から算出されるFlux (μ g/min/cm²)の結果を示す。界面活性剤の添加は、ドナー側でのCVD濃度および膜透過性を高めた。中でもCVD/PVP (1/3)の処方へのSE

の添加は、SEを添加していない処方と比較し

て、CVDの膜透過速度を約1.3倍に増大した。

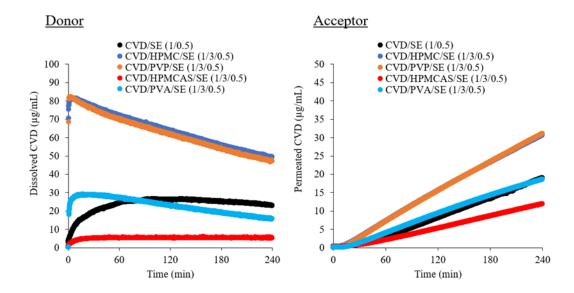


図3 非晶質固体分散体への界面活性剤の添加がCVDの溶解性および膜透過性に 及ぼす影響

(CVD添加量: 100 μg/mL, 温度: 37℃, 撹拌速度: 200 rpm, 測定間隔: 10秒)

日本バリデーション・テクノロジーズ株式会社

■ お問い合せ 共通TEL: 050-3536-1817(IP) MAIL: contact@validation.co.jp

NVTアプリケーションノート 10-MfVc

2022年07月

表2 非晶質固体分散体への界面活性剤の添加がCVDの膜透過速度 (FLUX)に及ぼす影響

	CVD/SE	CVD/HPMC/SE	CVD/PVP/SE	CVD/HPMCAS/SE	CVD/PVA/SE
	(1/0.5)	(1/3/0.5)	(1/3/0.5)	(1/3/0.5)	(1/3/0.5)
Flux (µg/min/cm ²)	0.852	1.349	1.354	0.418	0.875

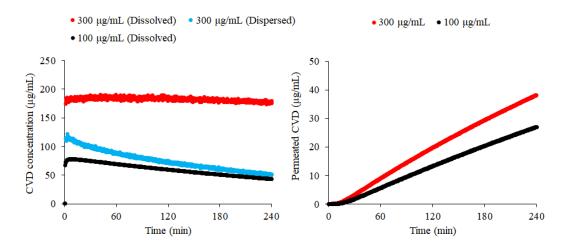
溶液中での薬物濃度が非晶質溶解度以上にな ると相分離が起こる現象が報告されている。 CVDの相分離が起こる濃度をuFlux付属のプ ローブを用いて濁度の変化から算出したとこ ろ、相分離が起こる濃度は約170 μg/mLで あった。そこで相分離した相がCVDの膜透過 性に及ぼす影響を確認するため、CVD/HPMC (1/3)の非晶質固体分散体の処方を用いて、 CVDの溶解性および膜透過性をµFluxにより評 価した(表3および図4)。添加量は、100あるい は300 μg/mLとし、300 μg/mL添加した場合は、 ドナー側で溶解している成分 (Dissolved)と相 分離している成分 (Dispersed)に分離して評価 を行った。300 μg/mLの添加では、試験時間 内においてドナー側で非晶質溶解度が維持さ れ膜透過性の向上が確認された。これは溶解 しているCVDが膜透過した際に、相分離して いる相から再溶解したためであると考えられ た。

結論

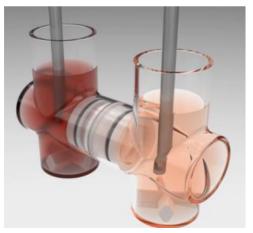
VCMとμFluxの併用による検討により、固体 分散体処方のポリマー選択の検討を簡便に行 うことができ、更には界面活性剤を添加した 際の薬物の溶解性や膜透過性も評価可能で あった。また、非晶質溶解度以上に添加した 際のドナー側での溶解成分と相分離した相を 分離して評価することが可能であり、相分離 した相の膜透過性への寄与を評価することが 可能であった。

表3 CVDの添加量がCVDの膜透過速度 (FLUX)に及ぼす影響 (処方: CVD/HPMC (1/3))

Added CVD amount in donor side (μg/mL)	100	300
Flux (µg/min/cm ²)	1.23	1.73


日本バリデーション・テクノロジーズ株式会社

I お問い合せ 共通TEL: 050-3536-1817(IP) MAIL: contact@validation.co.jp



添加量の違いがCVDの溶解性および膜透過性に及ぼす影響 図4 (処方: CVD/HPMC (1/3), CVD添加量: 100あるいは300 µg/mL, 温度: 37℃, 撹拌速度: 200 rpm, 測定間隔: 10秒)

非晶質固体分散体調製装置 **VCM**

原薬スケール吸収性評価装置 μFlux

日本バリデーション・テクノロジーズ株式会社

■ お問い合せ 共通TEL: 050-3536-1817(IP) MAIL: contact@validation.co.jp